Run PCA on a BANKSY matrix.
runBanksyPCA(
se,
use_agf = FALSE,
lambda = 0.2,
npcs = 20L,
assay_name = NULL,
scale = TRUE,
group = NULL,
M = NULL,
seed = NULL
)A SpatialExperiment,
SingleCellExperiment or SummarizedExperiment
object with computeBanksy ran.
A logical vector specifying whether to use the AGF for computing principal components.
A numeric vector in \(\in [0,1]\) specifying a spatial weighting parameter. Larger values (e.g. 0.8) incorporate more spatial neighborhood and find spatial domains, while smaller values (e.g. 0.2) perform spatial cell-typing.
An integer scalar specifying the number of principal components to compute.
A string scalar specifying the name of the assay used in
computeBanksy.
A logical scalar specifying whether to scale features before PCA. Defaults to TRUE.
A string scalar specifying a grouping variable for samples in
se. This is used to scale the samples in each group separately.
Advanced usage. An integer vector specifying the highest azimuthal
Fourier harmonic to use. If specified, overwrites the use_agf
argument.
Seed for PCA. If not specified, no seed is set.
A SpatialExperiment / SingleCellExperiment / SummarizedExperiment
object with PC coordinates in reducedDims(se).
This function runs PCA on the BANKSY matrix (see getBanksyMatrix) with features scaled to zero mean and unit standard deviation.
data(rings)
spe <- computeBanksy(rings, assay_name = "counts", M = 1, k_geom = c(15, 30))
#> Computing neighbors...
#> Spatial mode is kNN_median
#> Parameters: k_geom=15
#> Done
#> Computing neighbors...
#> Spatial mode is kNN_median
#> Parameters: k_geom=30
#> Done
#> Done
#> Centering
#> Done
spe <- runBanksyPCA(spe, M = 1, lambda = 0.2, npcs = 20)